150 research outputs found

    Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress.

    Get PDF
    Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms

    Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs

    Get PDF
    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an economically important vegetable belonging to the Cucurbitaceae family. Genotypes that exhibit agronomically important traits are selected for the development of elite cultivars. Understanding the genetic diversity and the genotype population structure based on molecular markers at the genome level can speed up the utilization of diverse genetic resources for varietal improvement. In the present study, we carried out an analysis of genetic diversity based on 3882 SNP markers across 37 core watermelon genotypes, including the most widely used watermelon varieties and wild watermelon. Based on the SNP genotyping data of the 37 watermelon genotypes screened, gene diversity and polymorphism information content values across chromosomes varied between 0.03–0.5 and 0.02–0.38, with averages of 0.14 and 0.13, respectively. The two wild watermelon genotypes were distinct from cultivated varieties and the remaining 35 cultivated genotypes were differentiated into three major clusters: 20 genotypes were grouped in cluster I; 11 genotypes were grouped in cluster II; three advanced breeding lines of yellow fruit flesh and genotype SW043 were grouped in cluster III. The results from neighbour-joining dendrogram, principal coordinate analysis and STRUCTURE analysis approaches were consistent, and the grouping of genotypes was generally in agreement with their origins. Here we reveal the genetic relationships among the core watermelon genotypes maintained at the Jiangsu Academy of Agricultural Sciences, China. The molecular and phenotypic characterization of the existing core watermelon genotypes, together with specific agronomic characteristics, can be utilized by researchers and breeders for future watermelon improvement

    Proteomics Advances in the Understanding of Pollen–Pistil Interactions

    No full text
    The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI) process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction

    RNA-Seq Uncovers SNPs and Alternative Splicing Events in Asian Lotus (Nelumbo nucifera).

    No full text
    RNA-Seq is an efficient way to comprehensively identify single nucleotide polymorphisms (SNPs) and alternative splicing (AS) events from the expressed genes. In this study, we conducted transcriptome sequencing of four Asian lotus (Nelumbo nucifera) cultivars using Illumina HiSeq2000 platform to identify SNPs and AS events in lotus. A total of 505 million pair-end RNA-Seq reads were generated from four cultivars, of which 86% were mapped to the lotus reference genome. Using the four sets of data together, a total of 357,689 putative SNPs were identified with an average density of one SNP per 2.2 kb. These SNPs were located in 1,253 scaffolds and 15,016 expressed genes. A/G and C/T were the two major types of SNPs in the Asian lotus transcriptome. In parallel, a total of 177,540 AS events were detected in the four cultivars and were distributed in 64% of the expressed genes of lotus. The predominant type of AS events was alternative 5' first exon, which accounted for 41.2% of all the observed AS events, and exon skipping only accounted for 4.3% of all AS. Gene Ontology analysis was conducted to analyze the function of the genes containing SNPs and AS events. Validation of selected SNPs and AS events revealed that 74% of SNPs and 80% of AS events were reliable, which indicates that RNA-Seq is an efficient approach to uncover gene-associated SNPs and AS events. A large number of SNPs and AS events identified in our study will facilitate further genetic and functional genomics research in lotus

    Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy

    Get PDF
    Background: Gibberellins (GAs) are plant-specific hormones that play a central role in the regulation of growth and development with respect to environmental variability. Plants respond to GAs signal through various biochemical and physiological processes. To better understand the response for GA signal, we carried out a proteomic study in rice (Oryza sativa L. spp. japonica) leaf. Results: Through two-dimensional gel electrophoresis (2-DE) and mass spectroscopy analysis, we identified 61 proteins as GA-responsive. These proteins were annotated in various biological functions, such as signal transduction and cell growth/division, photosynthesis and energy metabolism, protein stability and defense. Among these, photosynthetic proteins decreased while many catabolic proteins increased. In addition, GA up-regulated a variety of cell growth/division, protein stability and defense proteins such as cell division cycle protein 48, molecular chaperones, and catalases. Conclusion: This is the first report that cell division cycle protein 48 may be responsible for leaf expansion after leaf sensing GA signal. The results presented here provide new insight into the mechanism of rice leaf in response to GA signal
    corecore